\qquad

1. Use the data below to approximate the area under the curve using Left Riemann Sums. and 4 sub-intervals.

T	0	2	5	7	11
$\mathrm{P}(\mathrm{t})$	5.7	4	2	1.2	.6

2. Use a Right Riemann sum with 4 subintervals indicated by the data in the table to approximate $\int_{0}^{12} f(x) d x$. Show the work that leads to your answer.

T	0	3	6	9	12
$\mathrm{~W}(\mathrm{t})$	20	31	28	24	22

3. Use the data below to approximate the area under the curve using the Trapezoid Rule with 4 sub-intervals.

T	0	30	40	50	70
$R(t)$	20	30	40	55	65

4. Use the data below to approximate the area under the curve using a Midpoint Riemann Sums with 2 sub-intervals

t	0	4	8	12	16
$\mathrm{~V}(\mathrm{t})$	7	9.2	9.5	7	4.5

